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Abstract. The states of a quantum mechanical system form a convex set with the pure states 
as extremals. For a system of spin-$, the set is a 3-dimensional ball. For spin j ,  the convex 
set is stratified by rank r, l s r < 2 j + l .  The dimension of the stratum of rank r is 
r[2(2j+ 1)-r]- 1. We describe geometrically, for j = 1, how the strata with r = 1 ,2 ,3  fit 
together in the 8-dimensional convex set. As a simpler example, we give the real section of 
this set, i.e., we describe the states of the real 3 X 3 matrix algebra. 

1. Introduction 

This paper offers a geometrical description of the convex set of states for a spin-3 and for 
a spin-1 quantum system. The purpose is pedagogical; the descriptions probably have 
no direct usefulness, but they illustrate aspects of the convexity property of states which 
is now an important concept in statistical mechanics. It is hoped that this account will be 
a helpful complement to the algebraic specification of spin states given by Park and 
Band (1971). The convexity of the set of states of a general quantum system was first 
discussed by Segal (1947). We shall discuss only the states of a system having a 
finite-dimensional Hilbert space. Such states are elements of a closed bounded convex 
subset of a finite-dimensional real vector space. Henceforth we restrict our discussion 
to this sort of convex set. 

In 0 2 we show that such convex sets are stratified by rank. A point of a convex set is 
extremal if it is not a convex combination of two other points. The rank of a point of a 
convex set is the minimal number of extremal points of which it is a convex combination 
and is well defined in the sets as restricted above. States of a quantum mechanical 
system are specified by density operators. In 0 3.we show that these form a convex set 
and that the rank of a density operator is its rank in vector space terminology, namely 
the dimension of its range. The pure states have rank one and are the extremal points of 
the set. 

In a convex set, the set of points of maximal rank has maximal dimension and forms 
the interior of the set. The interior is surrounded by a hierarchy of hyperfaces of all 
lower ranks down to one. In the simplest convex sets, the dimension of a stratum of a 
given rank drops by one as the rank drops by one. For example, the three-dimensional 
tetrahedron has an interior of rank 4, faces of rank 3, edges of rank 2, and vertices of 
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rank 1. The three-dimensional ball has an interior of rank 2 and a surface of rank 1. 
However, as we show in 0 4, the dimension of the set of states of rank r < 2 j  + 1 of a 
spin-j system is r[2(2j + 1) - r ]  - 1, which is a nonlinear function of rank. This is the 
motivation to see geometrically precisely how the pure states and the mixed states of 
different ranks are positioned relative to each other in the convex set of states. We 
exhibit these sets for a spin-$ system and a spin-1 system in 80 5 and 6. The spin-; set is 
too simple to show the general features and the spin-1 set has too many dimensions to 
be satisfactorily imaginable, so in 0 7 we describe the 'real slice' of the spin-1 set; this 
has fewer dimensions and is more accessible to the imagination. 

2. Convexsets 

We begin by stating some standard results (Eggleston 1969). Let S be a closed bounded 
subset of a finite-dimensional real vector space. We say S is conuex if given any two 
points x ,  y of S, the points 

Ax + (1 - A ) y ,  O S A S l  

of the line between them all lie in S. A point z E S is called extremal if it has no such 
decomposition into other points x ,  y of S. Extrema1 points of S exist. Any point x of S 
may be expressed as a conuex combination of extremal points, i.e., 

x = hizi, 
i = l  

hi 3 0, Ai = 1, 
i 

where the zi are extremal. This expression is not usually unique. The rank of x is the 
smallest number r of the zi needed. Thus the extremal points have rank one, and the 
rank function divides the set into strata which are connected subsets of points of equal 
rank. 

3. Density operators 

We consider a quantum mechanical system whose observables are the Hermitian 
elements A = A *  of the set I,(%') of linear operators on a complex Hilbert space X of 
finite dimension n. A state o of the system is a normalized positive linear functional on 
L(X), i.e., 

0 : L ( X ) + C ,  

(i) o (1) = 1, (normalization) 

(ii) o(A*A)  > O  if A # 0, (positivity) 

(iii) w(clAl +c2A2) = clo(Al) +c20(A2),  (linearity). 

It follows that if A = A* then o ( A )  is real. We may write L(X) = XO X', where X' is 
the dual vector space of X; the set of states is the positive subset of the dual of this set 
(which is actually selfdual). Thus states are also elements of L(%), and the action is 
o ( A )  = Tr(o. A). The conditions (i) and (ii) require the states to be positive Hermitian 
elements of L(%') with unit trace. So regarded, the states are usually called densizy 
operators. Evidently any convex sum of density operators is another density operator, 
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so the states form a convex set. Since any density operator o is Hermitian it may be 
diagonalized into a sum of projections Ihi)(Ai I onto its (orthogonal) eigenspaces, where 
the coefficients are the eigenvalues hi, 

Since w is positive and of unit trace, this is a convex decomposition. No projection 
operator lAi)(hiJ can be further decomposed, and so these form the extrema1 points of 
the convex set. To each element (4) E 2 there corresponds the density operator (+)(+(; 
this is usually called a pure state. We see that the 'vector space' rank of w equals the 
'convex set' rank of U,  since both are equal to the number of terms on the right-hand 
side of equation (1). 

4. Dimension of space of n X n Hermitian operators of rank r 

We first compute the number of degrees of freedom in an n X n Hermitian matrix whose 
first r columns are linearly independent, and the remaining n - r  columns are linear 
combinations of the first r. We draw it thus: 

. I -  

C 
Then the top left r X r matrix a is an arbitrary Hermitian matrix and has r2  degrees of 
freedom. Each of the remaining n - r  columns of length r, making up p, needs r 
complex coefficients to specify its linear dependence on the first r, so there are 2r(n - r )  
real degrees of freedom in p, making a total of 

r2 + 2r(n  - r )  = r(2n - r )  ( 2 )  

degrees of freedom altogether. When Q and /3 are specified, so also is the bottom right 
(n - r )  x (n - r) matrix y, since the columns of y must be the same linear combinations of 
/3* as the columns of p are of a. One can easily verify that y, so computed, is Hermitian. 
To obtain the set of all Hermitian n X n matrices of rank r we must augment the above 
matrices by matrices whose first r columns are linearly dependent but which have r 
independent columns altogether. This evidently does not increase the dimension of the 
set. 

A more elegant proof of (2) begins with the observation that a Hermitian operator of 
rank r on 2 has a null space of complex dimension n - r. Now the real dimension of the 
space "Ir of these (n - r)-complex-dimensional subspaces of 9'8 is the dimension of the 
group U(n)/(U(n -r) 0 U(r)),  which is 

n 2 - ( n  - r ) 2 - r 2 =  2r(n - r )  

since dimension U(n) = n2. Having selected an element VE 5' to be kernel, our 
operator must be just a Hermitian operator on the orthogonal complement VI ,  and so 
has dimension r2 ,  giving the same total dimension as before. The dimension of the 
density operators of rank r on Xi s  one less than this, because of the trace condition, and 
so is 

r(2n - r ) -  1. (3) 
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5. States of system of spin-; 

In this case, n = 2 so the convex set of states has two strata, of ranks 1 and 2, and, by 
equation (3), dimensions 2 and 3 respectively. 

In an orthonormal basis of X the density matrices have the form 

where the positivity and trace conditions give 

O C a C l ,  O s b s l ,  a + b = l  

h k  + h: c ab. 

The pure state which corresponds to the spinor 

has density matrix 

(4) 

We wish to exhibit geometrically the convex set of matrices (4) with the set (7) as the 
extrema1 points. 

The natural Euclidean space to work in is the 4-dimensional space (hR, hI, a, b). 
Conditions (5) restrict (a, b) to the positive piece of the hyperplane a + b = 1. We do 
not lose geometrical understanding if we eliminate b by setting b = 1 - a  in the 
inequality (6), i.e., we restrict our vision to this 3-dimensional hyperplane and forget its 
embedding space. The inequality (6) then gives 

(a - i) + h i  + h: C a (8) 
so that the points (hR,  hI, a )  lie inside or on the ball centre (0, 0, i), radius $ in Cartesian 
3-space. Each point of this ball gives a density matrix. The pure-state density matrix (7) 
has point (Re E@, Im tip, (a(*) which saturates the inequality (8) and so lies on the 
surface of the ball. 

The points of the surface are in (1, 1) correspondence with the unit rays in C2. (This 
mapping from the 3-dimensional sphere S3 of units hors in C2 to the sphere S2  in R 3  is 
known as the Hopf fibration (Spanier 1966), S 3 / S  = S2.  The quotient S' arises from 
the invariance of the state (7) under the circle group S' of phase transformations eih of 
the spinor.) 

In the spin-i case we have therefore a good geometrical picture of the mixed states 
sitting inside the pure states; the mixed states are the points inside the ball and the pure 
states are the points on the surface (figure 1). The mixed states have rank 2. The 
decomposition of a mixed state, point U, as a convex sum of two pure states and (CI2 is 
given geometrically by drawing a straight line through w ; and & are its intersections 
with the sphere. Evidently this may be done in a two-parameter family of ways. The 
points of the ball are immediately related to the expectation values of the observables 
J,, Jy, J,. Suppose the basis of X is the eigenbasis of J,, 14) and 1 -$). In this basis, 

P 

0 -1 
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Figure I. States of a spin-; system. 

Thus we have, with w given by (4), 
1 1 (J,) = Tr(wJ,) = hR, ( J y >  = hI, ( J z ) = S ( a - b ) = a - z .  

Hence we may identify the position vectors ( h ~ ,  h ~ ,  a -$) of the point w of the ball 
relative to its centre (0, 0, i) with the expectation value (J) of the angular momentum in 
the corresponding state. Several properties of spin-; states are now evident visually. 
For example, if ( J , > 2 + ( J y ) Z + ( J z ) 2 = ~  then the state is pure. Only one state is 
completely unpolarized, (J) = 0. The entire information possessed by a spin-$ state is 
embodied in its t hpe  expectation values (a. In the happy phrase of Park and Band 
(1971) the set {J,, J,,, Jz} constitutes a quorum of observables. 

6. States of system of spin-1 

In the notation of 0 4, %’= C3, n = 3 ,  so the convex set of states has 3 strata, ranks 1 ,2 ,3  
with dimensions 4, 7, 8. Typically 

; i”) a, b, c E Rf, g, h E C (9) 

with a trace condition 

a + b + c = l  (10) 
and the positivity conditions (for example, Frazer er a1 1957) 

det w = a b c + 2  R e ( f g h ) - ( a I f ) 2 + b ( g 1 2 + c l h ) 2 ) ~ 0 .  (13)  
The matrices w of rank 3 (for which det w > 0) form a convex region of R8. We shall 
investigate the shape of this region and see how the 4-dimensional subregion of pure 
states of rank 1 

bI2+ (PI2+ IYl2 = 1, 
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(for which (12) and (13) are equalities) sits in the 7-dimensional boundary of mixed 
states of rank 2 (for which det w = 0). 

Regions of space of dimension greater than 4 are hard to visualize. One can to some 
extent imagine a 4-dimensional region as a family of 3-dimensional slices. We have a 
better chance with convex regions than with others since they can have no subtlety of 
connectivity and any plane slice of the region is again convex. We shall examine the 
8-dimensional region step by step. 

b : l  a z o  c = l  

Figure 2. The triangle A .  

We start with the allowed values of a, b, c. The trace condition (10) and condition 
(1 1) restrict a, b, c to the triangle A of the plane a + b + c = 1 which lies in the positive 
octant, figure 2. Each point in A corresponds to an allowed set of values (a, b, c). Over 
each interior point (a, b, c) of A there is a convex 6-dimensional region of allowed 
values ( f R , f I ,  g R ,  gI, hR, hI). It follows from the inequalities (12) that this region 
collapses to the point f =  g = h = 0 at the vertices of A, to the 2-dimensional disc 
If12 G be, g = h = 0 on the edge a = 0 of A, and to corresponding discs on the other two 
edges of A. Suppose now that (a, b, c) is an interior point of A. We wish to describe the 
allowed region of (f, g,  h )  space at this point, given by (12) and (13). It is convenient to 
suppress the dependence on a, b and c by scaling the variables f, g,  h. We set 

The inequalities (12) and (1 3) become 

The region of (F, G, H) space determined by these inequalities is evidently symmetrical 
in F, G ,  H. Let us fix F i n  its disc IF1 6 1 and compute the 4-dimensional allowed region 
for ( G R ,  G I ,  HR,  HI) .  In (14) the phase arg F = xF appears only in the term 2 Re(FGH) 
and so only appears summed with the phases of G and H. Hence the regions in the (G ,  
H) space for all values of xF and constant IF1 are identical in shape, though they will 
have different orientations with respect to the axes. To find this shape we shall take F 
real for simplicity. Condition (15) then gives 

1 - F2 3 G i  + G :  + H i  + H: - ~ F ( G H R -  GIHI) .  

By the standard methods of coordinate geometry (e.g. Leithold 1972) we may rotate the 
(GR, HR)  axes and the (GI,  HI)  axes through 7r/4 to find that the allowed values of 
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(G,H) lie inside a 4-dimensional spheroid whose principal axes have lengths 
A+, A+, A-, A- given by 

A ,  = (1 zkF)1'2.  

As IF/ approaches its limiting value 1, we see that this 4-spheroid thins out to a 
2-dimensional disc. The same result holds if F is complex, which henceforth we shall 
take it to be. This behaviour of the shape may also be found directly from condition (15) 
with F = elxF, which gives 

(G ei*F-fi12s0 

This restricts G and H in (G, 
condition 

4-space to a 2-plane through the origin. Then the 

/ G I s  1 

/HIS 1 

or equivalently, by (16) 

gives the disc. It follows from (16) that when /GI = 1 so also /HI = 1 so that on the edges 
of this disc we may write 

F = eiXF, G = eiXG, H = eixH 

where by (16) 

Thus setting a = &, P = 4 e-ixh, y = &eiX# (or any constant phase times these) we see 

Thus the points on this disc are in (1 , l )  correspondence with the unit rays of X. We see 
from the symmetric nature of the result that if we had first fixed g=&eixG or 
h = &6 eiXH and computed the allowed values of h, f or off, g respectively, we should 
obtain again the same set of extreme points, and not new sets. In topological terms this 
set is S5/S' = P2@, the complex projective plane. 

Inside the region, we have det w > 0 by inequality (13) so the rank of w is 3. Every 
point in this region can be written as a convex combination of 3 pure points, and of not 
less than 3. On the boundary, det o = 0, the rank is 1 or 2. Thus, inside the (8, h )  
4-ellipsoids the rank is 3. On them, the rank is 2. On the extrema1 discs, the states are 
pure and the rank is 1. Of course, since f, g and h appear symmetrically in the problem, 
to each cross section we have obtained by fixing f there will be symmetrical results for 
fixing g or h. 
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7. Realsection 

The convex set described in 0 6 was 8-dimensional and hard to visualize. It was the set 
of positive Hermitian 3 x 3 complex matrices of unit trace. We compute here the real 
section of this set, the projection onto the hyperplane f I  = gI = hI = 0. This is the set of 
positive symmetric real matrices of unit trace, and may be viewed also as the set of states 
of a system whose algebra of observables is the 3 x 3  real matrix a1 ebra. The pure 
states are the unit rays of R 3 ;  they form the 2-dimensional space S / Z 2  = P2R. The 
mixed states of rank 3 form a 5-dimensional set; its 4-dimensional boundary consists 
almost entirely of rank 2 states but contains the pure states as a 2-dimensional subset. 
We now investigate how these strata fit together. The general density matrix is again 
(9) where a, b, c,  f ,  g, h obey (10)-(13) but now f ,  g and h are real. 

The conditions (10) and (1 1) again restrict (a ,  b, c )  to the triangle A of figure 2. Over 
each point (a ,  b, c )  in A the allowed points (f, g, h )  form a 3-dimensional region 
determined by the inequalities 

9 

f S bc, g2 s ca, h 2 S a b  

a b c + 2 f g h - ( a f 2 + b g 2 + c h 2 ) 3 0 ,  

which become 

- l S F , G , H S l  

F 2 + G 2 + H 2 - 2 F G H S  1 

upon making the substitution (14). Consider the plane sections F e  uals a constant of 
the boundary of this region. If F = 0, the section is the circle G2 + H = 1. If F = 1, it is 
the segment of the line G = H from (-1, -1) to (1, l) ,  and if F = -1 it is the segment of 
the line G = -H from (1 ,  -1) to (-1, 1). For intermediate values of F the section is an 
ellipse. The shape thus contains the vertices (-1, 1, -l), (-1, -1, l), (1, -1, -l), 
(1, 1, 1) of a tetrahedron and its edges. Further investigation shows that along these 
edges, the shape touches the faces of the cube whose corners are (*l, *l,  *l). So the 
shape is like that of an overfilled tetrapak carton, drawn in figure 3. If we now rescale 
back to the variables f ,  g, h then the cube distorts to a rectangular block, and it 
degenerates to a line segment on the edges of A. The pure states are at the four corners 
of the tetrapak. We observed that the pure states form a 2-sphere S2 with diametrical 
points identified by the reflection group Z2.  Such a space has 4 sectors (the octants of S 2  

9 

Figure 3. The region determined by conditions (17). 
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with opposite points identified) and each sector maps onto the triangle A to provide, at 
each interior point of A, one of the four pure states. The identifications at the edges of 
the sectors ensure that there are 2 pure states at each interior point of the edge of A and 
one pure state at each vertex of A. 

Acknowledgments 

I thank J Borwein, E Ihrig, D Kiang and A Niegawa for helpful comments and the Izaak 
Walton Killam Foundation for a Fellowship at the very hospitable Department of 
Physics, Dalhousie University. 

References 

Eggleston H G 1969 Convexity (Cambridge: Cambridge University Press) 
Frazer R A, Duncan W J and Collar A R 1957 Elementary Mafrices (Cambridge: Cambridge University 

Leithold L 1972 The Calculus with Analytic Geometry (New York: Harper and Row) chap. 12 
Park J L and Band W 1971 Found. Phys. 1 211-26 
Segal I E 1947 A n n .  Math., NY 48 930-48 
Spanier E 1966 Algebraic Topology (New York: McGraw-Hill) p 91 

Press) p 31 


